a2 United States Patent

Wang et al.

US009355134B1

US 9,355,134 B1
May 31, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(63)

(1)

(52)

(58)

FACILITATING DATA REDISTRIBUTION IN
DATABASE SHARDING

Applicant: Amazon Technologies, Inc., Reno, NV
(US)
Inventors: Weinan Wang, Bellevue, WA (US);
Joseph Magerramov, Seattle, WA (US);
Maxym Kharchenko, Bellevue, WA
(US); Min Zhu, Bellevue, WA (US);
Aaron Drew Alexander Kujat,
Issaquah, WA (US); Alessandro
Gherardi, Bellevue, WA (US); Jason
Curtis Jenks, Lynnwood, WA (US)

Assignee: Amazon Technologies, Inc., Seattle, WA

Us)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 387 days.

Appl. No.: 13/867,450

Filed: Apr. 22,2013

Related U.S. Application Data

Continuation of application No. 13/246,371, filed on
Sep. 27, 2011, now Pat. No. 8,429,162.

Int. Cl1.
GO6F 7/00 (2006.01)
GO6F 17/30 (2006.01)
U.S. CL

CPC GO6F 17/3033 (2013.01); GO6F 17/30194
(2013.01); GOGF 17/30289 (2013.01)

Field of Classification Search

None

See application file for complete search history.

130

J

303
Obtain Data ltem ‘
306 1
Obtain Standardized Portion of Data Item ‘
300 1
\ Generate Hash Code from Standardized Portion of
Data ltem
312 1
\{ Determine Bucket Identifier from Hash Code ‘
315 l
Determine Physical Data Store from Bucket Identifier
318 1

Store Data Item in Physical Data Store

e

(56) References Cited

U.S. PATENT DOCUMENTS

5,542,087 A * 7/1996 Neimat et al.

5,960,431 A * 9/1999 Choy

6,067,548 A * 5/2000 Cheng G06Q 10/10

6,366,945 Bl 4/2002 Fong et al.

7,355,977 Bl 4/2008 Li

7,801,912 B2 9/2010 Ransil et al.

7,979,771 B2 7/2011 Margolus et al.

8,429,162 B1* 4/2013 Wangetal. 707/737

8,738,624 B1* 5/2014 Wangetal. 707/737
2008/0021908 Al 1/2008 Trask et al.
2010/0293332 Al 11/2010 Krishnaprasad et al.
2011/0145540 Al 6/2011 Duisenberg et al.

OTHER PUBLICATIONS

Cattell, “Scalable SQL and NoSQL data stores”, CM SIGMOD
Record, vol. 39, Issue 4, pp. 12-27, Dec. 2010, ACM.*

Decandia, et al., “Dynamo: Amazon’s Highly Available Key-Value
Store”, in the Proceedings of the 2 1st ACM Symposium on Operating
Systems Principles, Oct. 2007, Retrieved on Dec. 6, 2012 from http://
www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf.

(Continued)

Primary Examiner — Michael Hicks

(74) Attorney, Agent, or Firm — Thomas | Horstemeyer,
LLP

(57) ABSTRACT

Disclosed are various embodiments for facilitating data redis-
tribution in database sharding. A database is maintained that
is horizontally partitioned into a set of first buckets using
modulo-based assignments. A fixed number of the first buck-
ets are stored in each of multiple physical data stores. The
database is repartitioned into a set of second buckets using
modulo-based assignments. The number of second buckets in
the set is a multiple of the sum of a positive integer and the
quantity of the physical data stores. The data in the database
is unmoved between the physical data stores by repartition-
ing.

20 Claims, 7 Drawing Sheets

130

/

H Obtain Request for Data Item Specifying Key ‘

324 1
Generate Hash Code from Key |
327 Il
Determine Bucket Identifier from Hash Code ‘
330 3
Determine Physical Data Store from Bucket Identifier
333 1

Obtain Data ltem According to Key and/or Other
Search Criteria from Physical Data Store

336 1

Return Data Item ‘

US 9,355,134 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Anderson, “Dynamo and CouchDB Clusters”, Cloudant, Aug. 13,
2010, retrieved on Dec. 6, 2012 from https://cloudant.com/blog/dy-
namo-and-couchdb-clusters/.

Stoica, et al., “Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications”, SIGCOMM’01, Aug. 37-31, 2001, San
Diego, California, retrieved on Dec. 6, 2012 from http://pdos.csail.
mit.edu/papers/chord:sigcomm01/chord__sigcomm.pdf.

Sybase, “Multiple and Composite Partition Keys and Range Parti-
tioning”, 2006, retrieved on Dec. 6, 2012 from http://infocenter.
sybase.com/help/index.jsp?topic=/com.sybase.dc34982_ 1500/
html/mig_ gde/mig_ gde74.htm.

Sasirekha, “Database Sharding—Horizontal Partitioning for Mas-
sive Scalability”, IT Knowledge Exchange, Sep. 24, 2010, retrieved
on Dec. 10, 2012 from http://iknowledgeexchange.techtarget.com/
enterprise-IT-tech-trends/database-sharding-horizontal -partition-
ing-for-massive-scalability/.

U.S. Appl. No. 13/246,437 entitled “Increasing Distributed Database
Capacity”, filed Sep. 27, 2011.

* cited by examiner

U.S. Patent

e |

May 31, 2016

Sheet 1 of 7

118

T
e

Computing Device(s)
106a

Physical Data Store
115a

Bucket 121aa

[o]
[¢]
(o]

Bucket 121aN

Computing Device(s)
106b
/’_\
v
Physical Data Store
115b

Bucket 121ba

[o]
o]
(o]

Bucket 121bN

US 9,355,134 B1

Computing Device(s)
106N
/"x
p’/
Physical Data Store
115N

Bucket 121Na

o]
o]
[¢]

Bucket 121NN

Data Store

Network

[

Management
Application 130

<y

Data Store 127

Bucket to Physical
Data Store Mapping
133

Bucket Assignment
Configuration 136

&_’/

Computing Device(s) 103

Data Store

'W<

Y

Client Application
139

Client(s) 109

Bucket 121
Data Item Data ltem Data ltem
124a 124b coo 124N
F I G " 1 100

U.S. Patent

S

May 31, 2016

>

Phys. Data Store
115a

First Bucket 211

First Bucket 212

Sheet 2 of 7 US 9,355,134 B1

/\

v

Phys. Data Store
115b

First Bucket 213

First Bucket 214

FIG. 2A

Phys. Data Store 115a

First Bucket 211

Second Bucket 221

Second Bucket 22

Second Bucket 229

First Bucket 212

Second Bucket 222

Second Bucket 226

Second Bucket 230

S

Phys. Data Store 115b

First Bucket 213

Second Bucket 223

Second Bucket 227

Second Bucket 231

First Bucket 214

Second Bucket 224

Second Bucket 228

Second Bucket 232
_//

FIG. 2B

U.S. Patent

May 31, 2016

S

Phys. Data Store 115a

Second Bucket 221

Second Bucket 225

Second Bucket 229

Second Bucket 222

Second Bucket 226

Second Bucket 230

Sheet 3 of 7

S

Phys. Data Store 115b

Second Bucket 223

Second Bucket 227

Second Bucket 231

Second Bucket 224

Second Bucket 228

Second Bucket 232

US 9,355,134 B1

— T
A

Phys. Data Store 115a

Second Bucket 221

Second Bucket 225

Second Bucket 222

Second Bucket 226

v

FIG. 2C

Phys. Data Store 115b

Second Bucket 223

Second Bucket 227

Second Bucket 224

Second Bucket 228

FIG. 2D

T
— A

Phys. Data Store 115c¢

Second Bucket 229

Second Bucket 230

Second Bucket 231

Second Bucket 232

¥_—/

U.S. Patent May 31, 2016 Sheet 4 of 7

A 4

Obtain Data ltem

W

h 4

Obtain Standardized Portion of Data ltem

A 4

(8 8 /8

Generate Hash Code from Standardized Portion of
Data Item

w
-
N

A 4

-

Determine Bucket Identifier from Hash Code

w
—_—
($)]

h 4

-

Determine Physical Data Store from Bucket Identifier

318 A 4

-

Store Data Item in Physical Data Store

End

FIG. 3A

US 9,355,134 B1

130

U.S. Patent May 31, 2016 Sheet 5 of 7 US 9,355,134 B1

130

321 A 4

\ Obtain Request for Data Item Specifying Key
324 v

\ Generate Hash Code from Key
327 \ 4

\ Determine Bucket Identifier from Hash Code
330 v

\ Determine Physical Data Store from Bucket Identifier

333 A 4

\ Obtain Data Item According to Key and/or Other
Search Criteria from Physical Data Store

336 A 4
\ Return Data ltem
Y
End

FIG. 3B

U.S. Patent May 31, 2016 Sheet 6 of 7 US 9,355,134 B1

130
339 v
\ Obtain Request to Repartition Database

that is Horizontally Partitioned Across
Multiple Physical Data Stores

342 v

\ Determine New Number of Buckets
345 A 4

\ Reassign Data from Old Buckets into New Buckets
348 v

\ Obtain Request to Redistribute Data to

New Physical Data Store(s)

351 \ 4

Migrate Data Assigned to Subset of New Buckets to
New Physical Data Stores to Provide Even Distribution
of Data Across the Physical Data Stores

End

FIG. 3C

U.S. Patent May 31, 2016 Sheet 7 of 7 US 9,355,134 B1

Computing Device(s) 103
Memory(ies) 406
Q Data Store
Proc:ggor(s) Management Application
— Data Store 130
127
A A
< v [~ 409 v >

FIG. 4

US 9,355,134 Bl

1
FACILITATING DATA REDISTRIBUTION IN
DATABASE SHARDING

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of, and claims priority to,
co-pending U.S. Patent Application entitled “FACILITAT-
ING DATA REDISTRIBUTION IN DATABASE SHARD-
ING,” filed on Sep. 27, 2011, and assigned application Ser.
No. 13/246,371, which is incorporated herein by reference in
its entirety.

BACKGROUND

Sharding refers to the horizontal partitioning of a database
among multiple physical data stores. In relational database
management systems, data is organized into tables containing
rows and columns. Each row corresponds to an instance of a
data item, and each column corresponds to an attribute for the
data item. Sharding produces partitions by rows instead of
columns. Through partitioning, the data in a single table may
be spread among potentially many different physical data
stores, thereby improving scalability.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better under-
stood with reference to the following drawings. The compo-
nents in the drawings are not necessarily to scale, emphasis
instead being placed upon clearly illustrating the principles of
the disclosure. Moreover, in the drawings, like reference
numerals designate corresponding parts throughout the sev-
eral views.

FIG. 1is a drawing of a networked environment according
to various embodiments of the present disclosure.

FIGS.2A-2D are drawings depicting various stages of data
redistribution among physical data stores in the networked
environment of FIG. 1 according to various embodiments of
the present disclosure.

FIGS. 3A-3C are flowcharts illustrating examples of func-
tionality implemented as portions of a data store management
application executed in a computing device in the networked
environment of FIG. 1 according to various embodiments of
the present disclosure.

FIG. 4 is a schematic block diagram that provides one
example illustration of a computing device employed in the
networked environment of FIG. 1 according to various
embodiments of the present disclosure.

DETAILED DESCRIPTION

The present disclosure relates to facilitating data redistri-
bution in database sharding. In database sharding, data items
from a database may be organized into “buckets,” which are
then mapped to physical data stores. For example, the primary
key, or a portion thereof, for a data item may be hashed,
thereby generating a hash code. The modulo operator may be
applied, with the hashcode being the dividend and the number
of buckets being the divisor. The resulting remainder may be
used to assign the data item to one of the buckets. This
approach yields an even distribution of the primary keys
among the buckets. For even distribution of the primary keys
among the data stores, the number of buckets is a multiple of
the number of data stores.

Various embodiments of the present disclosure facilitate
data redistribution when the number of data stores is

15

25

35

40

45

50

55

65

2

increased. If the number of data stores is to be increased, the
number of buckets is also increased if the number of buckets
is not a multiple of the number of data stores. Accordingly, a
new number of buckets may be generated, where the new
number of buckets is a multiple of the new number of data
stores. The data items are reassigned to the new buckets and
remain in place in their respective data stores under the exist-
ing mapping. Subsequently, data corresponding to some of
the buckets may be relocated to the new data stores. In the
following discussion, a general description of the system and
its components is provided, followed by a discussion of the
operation of the same.

With reference to FIG. 1, shown is a networked environ-
ment 100 according to various embodiments. The networked
environment 100 includes one or more computing devices
103 in data communication with a plurality of computing
devices 1064, 1065 . . . 106N and one or more clients 109 by
way of a network 112. The network 112 includes, for
example, the Internet, intranets, extranets, wide area net-
works (WANS), local area networks (LLANs), wired networks,
wireless networks, or other suitable networks, etc., or any
combination of two or more such networks.

The computing devices 106 may each comprise, for
example, a server computer or any other system providing
computing capability. Alternatively, each of the computing
devices 106 may represent a plurality of computing devices
106 may be employed that are arranged, for example, in one
or more server banks or computer banks or other arrange-
ments. For example, a plurality of computing devices 106
together may comprise a cloud computing resource, a grid
computing resource, and/or any other distributed computing
arrangement. Such computing devices 106 may be located in
a single installation or may be distributed among many dif-
ferent geographical locations. For purposes of convenience,
each computing device 106 is referred to herein in the singu-
lar. Even though each computing device 106 is referred to in
the singular, it is understood that a plurality of computing
devices 106 may be employed in the various arrangements as
described above. Each of the computing devices 106 includes
one or more data storage devices.

Each of the computing devices 106 includes a respective
one of a plurality of physical data stores 1154, 1155 . . . 115N.
The physical data stores 115 collectively store a horizontally
partitioned database 118. The respective data from the data-
base 118 that is stored by each one of the physical data stores
115 may be referred to as a shard or a horizontal partition.
Such a shard or horizontal partition corresponds to a plurality
of'buckets 121. In some embodiments, multiple physical data
stores 115 may be hosted by one computing device 106.
However, in other embodiments, the physical data stores 115
may be hosted by distinct computing devices 106 to improve
performance and scalability. In some of these embodiments,
a single physical data store 115 may be hosted by multiple
computing devices 106 to further improve performance.

The buckets 121 stored by the physical data store 115a
comprise a plurality of buckets 121 as . . . 121aN. The buckets
121 stored by the physical data store 1155 comprise a plural-
ity of buckets 121ba . . . 1215N. The buckets 121 stored by the
physical data store 115N comprise a plurality of buckets
121Na ... 121NN. Each bucket 121 corresponds to a respec-
tive grouping of a plurality of data items 124a, 1245 .. . 124N
from the database 118. With a database 118 that is a relational
database, the data items 124 may correspond to rows from one
or more tables. The data items 124 are assigned to particular
buckets 121 using a modulus-based mapping to distribute the
data items 124 evenly across the buckets 121. The buckets
121, inturn, are mapped to one of the physical data stores 115.

US 9,355,134 Bl

3

The computing device 103 may comprise, for example, a
server computer or any other system providing computing
capability. Alternatively, a plurality of computing devices 103
may be employed that are arranged, for example, in one or
more server banks or computer banks or other arrangements.
For example, a plurality of computing devices 103 together
may comprise a cloud computing resource, a grid computing
resource, and/or any other distributed computing arrange-
ment. Such computing devices 103 may be located in a single
installation or may be distributed among many different geo-
graphical locations. For purposes of convenience, the com-
puting device 103 is referred to herein in the singular. Even
though the computing device 103 is referred to in the singular,
it is understood that a plurality of computing devices 103 may
be employed in the various arrangements as described above.

Various applications and/or other functionality may be
executed in the computing device 103 according to various
embodiments. Also, various data is stored in a data store 127
that is accessible to the computing device 103. The data store
127 may be representative of a plurality of data stores 127 as
can be appreciated. The data stored in the data store 127, for
example, is associated with the operation of the various appli-
cations and/or functional entities described below.

The components executed on the computing device 103,
for example, include a data store management application
130 and other applications, services, processes, systems,
engines, or functionality not discussed in detail herein. The
data store management application 130 is executed to main-
tain the database 118 stored in the physical data stores 115. To
this end, the data store management application 130 is con-
figured to store data items 124 in the database 118 and obtain
data items 124 or portions thereof from the database 118. The
data store management application 130 also may repartition
the database 118 into buckets 121 and add or remove physical
data stores 115 with redistribution of data from the database
118 as will be described.

The data stored in the data store 127 includes, for example,
a bucket to physical data store mapping 133, a bucket assign-
ment configuration 136, and potentially other data. The
bucket to physical data store mapping 133 defines which
buckets 121 are stored in which physical data stores 115. The
bucket assignment configuration 136 controls assignment of
data items 124 to buckets 121 by the data store management
application 130. Additionally, the bucket assignment con-
figuration 136 may be used to determine a bucket 121 to
which a data item 124 has been assigned.

The client 109 is representative of a plurality of client
devices that may be coupled to the network 112. The client
109 may comprise, for example, a processor-based system
such as a computer system. Such a computer system may be
embodied in the form of a desktop computer, a server com-
puter, a laptop computer, personal digital assistants, cellular
telephones, smartphones, set-top boxes, music players, web
pads, tablet computer systems, game consoles, electronic
book readers, or other devices with like capability. The client
109 may include a display comprising, for example, one or
more devices such as cathode ray tubes (CRTs), liquid crystal
display (LCD) screens, gas plasma-based flat panel displays,
LCD projectors, or other types of display devices, etc.

The client 109 may be configured to execute various appli-
cations such as a data store client application 139 and/or other
applications. The data store client application 139 is
employed to access data items 124 or portions thereof which
are stored in the database 118. The data store client applica-
tion 139 may also store and/or update data items 124 stored in
the database 118. The data store client application 139 may
employ structured query language (SQL) and/or other inter-

10

15

20

25

30

35

40

45

50

55

60

4

faces. In some embodiments, the data store client application
139 may be executed in the computing device 103. The client
109 may be configured to execute applications beyond the
data store client application 139 such as, for example,
browser applications, mobile applications, email applica-
tions, instant message applications, and/or other applications.

Next, a general description of the operation of the various
components of the networked environment 100 is provided.
To begin, a database 118 is configured to use multiple physi-
cal data stores 115 to store data. The database 118 is parti-
tioned into buckets 121, with at least one bucket 121 being
stored in each physical data store 115. The same number of
buckets 121 are stored in each physical data store 115 to
facilitate equal distribution of data items 124 to the physical
data stores 115. The bucket to physical data store mapping
133 records which of the buckets 121 are stored in which of
the physical data stores 115.

Data items 124 are assigned to buckets 121 through a
procedure controlled by the bucket assignment configuration
136. For example, a key or other standardized portion of a
data item 124 may be hashed, and the resulting hash value
may be assigned to one of the buckets 121 using a modulo-
based assignment. The modulo-based assignment may be
stored in association with the data item 124 or determined
dynamically in response to accessing the data item 124.

In one non-limiting example, the database 118 stores data
relating to an electronic marketplace with multiple mer-
chants. It may be desired that the data of each merchant be
stored in one physical data store 115. Thus, the data items 124
stored by the merchant may include a merchant identifier. The
bucket 121 assignment may be derived from the merchant
identifier to ensure that data of the merchant is stored in one
bucket 121 and one physical data store 115.

After the database 118 is initially configured, an increased
number of buckets 121 may be desired for various reasons.
For example, it may be easier to backup the database 118 if it
is partitioned into a greater number of buckets 121 with each
bucket 121 holding less data. To this end, the number of
buckets 121 may be increased by some multiple of the num-
ber of buckets 121 so that each bucket 121 is divided into the
same number of smaller buckets 121. The multiple may be
selected in order to migrate buckets 121 to additional physical
data stores 115. However, no data migration is necessary to
accomplish repartitioning into a new number of buckets 121.
An example of bucket 121 repartitioning and data migration
to additional physical data stores 115 will next be described in
connection with the following four figures.

Turning now to FIGS. 2A-2D, shown are drawings depict-
ing various stages of data redistribution among a plurality of
physical data stores 115 in the networked environment 100
(FIG. 1) according to various embodiments. FIG. 2A shows
two physical data stores 115a¢ and 1156 which are used to
store data items 124 (FIG. 1) from a database 118 (FIG. 1).
The physical data store 1154 is mapped to two first buckets
211 and 212. The physical data store 1155 is also mapped to
two first buckets 213 and 214. It is noted that each physical
data store 115 is mapped to an equal number of buckets 121
(FIG. 1) to provide for an equal distribution of data assign-
ments across the physical data stores 115. At the least, each
physical data store 115 will have one bucket 121, but a physi-
cal data store 115 may store many buckets 121 in some cases.

FIG. 2B illustrates the physical data stores 115a and 1155
from FIG. 2A after repartitioning to increase the number of
buckets 121 (FIG. 1). The buckets 121 according to the pre-
vious configuration are referred to as first buckets 121, while
the buckets 121 according to the new configuration are
referred to second buckets 121. In the non-limiting example

US 9,355,134 Bl

5
of FIG. 2B, each first bucket 121 is divided into three second
buckets 121. In the physical data store 115a, the first bucket
211 is divided into second buckets 221, 225, and 229, and the
first bucket 212 is divided into second buckets 222, 226, and
230. In the physical data store 1155, the first bucket 213 is
divided into second buckets 223, 227, and 231, and the first
bucket 214 is divided into second buckets 224, 228, and 232.

It is noted that each one of the first buckets 211, 212, 213,
and 214 is divided into the same number of second buckets
121. Thetotal number of second buckets 121 may be selected,
for example, to be amultiple of a new number of physical data
stores 115. Also, in this non-limiting example, the identifier
for each second bucket 121 may be derived from the identifier
for the respective first bucket 121.

To illustrate, the first bucket 212 may have an identifier i1
of “2”” The identifiers i2 of the second buckets 222, 226, and
230 may be determined according to the equation: i2=il+k*n,
where k is the number of first buckets 121 and n is a non-
negative integer less than the number of second buckets 121
divided by k. Here, k equals 4, the number of second buckets
121 equals 12, and n equals the set of {0, 1, 2}. Therefore, the
setofi2is {2, 6, 10}, which corresponds to the identifiers for
second buckets 222, 226, and 230. It is noted that the refer-
ence numerals for the second buckets 121 are intentionally
selected to be 220 plus the identifier described above, to fit
with this example.

FIG. 2C illustrates the result of this repartitioning. The
physical data store 115a stores the second buckets 221, 225,
229, 222, 226, and 230. The physical data store 1155 stores
the second buckets 223, 227, 231, 224, 228, and 232. It is
noted that each of the physical data stores 1154 and 1156
stores an equal number of buckets 121 (FIG. 1), which facili-
tates an equal distribution of data items 124 (FIG. 1) to each
of the physical data stores 115.

FIG. 2D depicts the addition of a new physical data store
115¢ and a redistribution of data items 124 (FIG. 1) from the
other physical data stores 115a and 1155 to the physical data
store 115¢. In F1G. 2D, the second buckets 229, 230, 231, and
232 have been migrated to the physical data store 115¢, with
the second buckets 229 and 230 coming from the physical
data store 1154 and the second buckets 231 and 232 coming
from the physical data store 1156 (see FIG. 2C). An equal
number of buckets 121 (FIG. 1) are migrated from each of the
physical data stores 1154 and 1155, with the result being that
each of the physical data stores 115a, 1155, and 115c¢ stores
an equal number of buckets 121 after the redistribution.
Although specific buckets 121 are illustrated as being moved
to the physical data stores 115¢ in this example, any four of
the buckets 121 may be moved as desired.

Referring next to FIG. 3A, shown is a flowchart that pro-
vides one example of the operation of a portion of the data
store management application 130 according to various
embodiments. In particular, the flowchart of FIG. 3A relates
to storage of a dataitem 124 (FI1G. 1) in the database 118 (FIG.
1). It is understood that the flowchart of FIG. 3A provides
merely an example of the many different types of functional
arrangements that may be employed to implement the opera-
tion of the portion of the data store management application
130 as described herein. As an alternative, the flowchart of
FIG. 3A may be viewed as depicting an example of steps of a
method implemented in the computing device 103 (FIG. 1)
according to one or more embodiments.

Beginning with box 303, the data store management appli-
cation 130 obtains a data item 124. For example, the data item
124 may be supplied by a data store client application 139
(FIG. 1) as part of an SQL insert or update statement. In box
306, the data store management application 130 obtains a

10

15

20

25

30

35

40

45

50

55

60

65

6

standardized portion of the data item 124. The standardized
portion may correspond, for example, to a primary key or a
portion thereof. In box 309, the data store management appli-
cation 130 generates a hash code by applying a hash function
to the standardized portion of the data item 124.

In box 312, the data store management application 130
determines a bucket identifier from the hash code. The bucket
identifier uniquely identifies a bucket 121 (FIG. 1). In one
embodiment, the data store management application 130
applies the modulus operation to the hash code, which is used
as the dividend, and to the number of buckets, which is used
as the divisor. The result of the modulus operation may be
used directly as the bucket identifier or may be transformed in
some way to arrive at the bucket identifier. In another embodi-
ment, the bucket identifier may be determined according to a
mapping of data items 124 to buckets 121. The determination
of'the bucket identifier may be controlled in part by settings in
the bucket assignment configuration 136 (FIG. 1).

In box 315, the data store management application 130
determines a physical data store 115 (FIG. 1) from the bucket
identifier. To this end, the data store management application
130 may consult the bucket to physical data store mapping
133 (FIG. 1). In box 318, the data store management appli-
cation 130 stores, or updates, the data item 124 in the physical
data store 115 determined in box 315. In one embodiment, the
data store management application 130 may store the bucket
identifier along with the data item 124. Thereafter, the portion
of the data store management application 130 ends.

Turning now to FIG. 3B, shown is a flowchart that provides
one example of the operation of another portion of the data
store management application 130 according to various
embodiments. Specifically, the flowchart of FIG. 3B relates to
obtaining a data item 124 (FIG. 1) from a database 118 (FIG.
1). It is understood that the flowchart of FIG. 3B provides
merely an example of the many different types of functional
arrangements that may be employed to implement the opera-
tion of the other portion of the data store management appli-
cation 130 as described herein. As an alternative, the flow-
chart of FIG. 3B may be viewed as depicting an example of
steps of a method implemented in the computing device 103
(FIG. 1) according to one or more embodiments.

Beginning with box 321, the data store management appli-
cation 130 obtains a request for a data item 124, where the
request specifies a key that identifies the data item 124. For
example, the request may be obtained from a data store client
application 139 (FIG. 1) and may correspond to a select SQL
statement. In box 324, the data store management application
130 generates a hash code by applying a hash function to the
key or a portion of the key.

In box 327, the data store management application 130
determines a bucket identifier from the hash code. In one
embodiment, the data store management application 130 may
apply a modulus operation to determine the bucket identifier,
i.e., the bucket identifier equals the hash code modulo the
number of buckets 121 (FIG. 1). The result of the modulus
operation may be transformed in some way to arrive at the
bucket identifier. The determination of the bucket identifier
from the key may be controlled at least in part by stored
settings in the bucket assignment configuration 136 (FIG. 1).

In box 330, the data store management application 130
determines a physical data store 115 (FIG. 1) from the bucket
identifier according to the bucket to physical data store map-
ping 133 (FIG. 1). In box 333, the data store management
application 130 obtains the data item 124 according to the key
and/or other search criteria from the physical data store 115
determined in box 330. In box 336, the data store manage-

US 9,355,134 Bl

7

ment application 130 returns the data item 124. Thereafter,
the portion of the data store management application 130
ends.

Moving on to FIG. 3C, shown is a flowchart that provides
one example ofthe operation of'yet another portion of the data
store management application 130 according to various
embodiments. In particular, the flowchart of FIG. 3C relates
to the redistribution of data items 124 (FIG. 1) in the database
118 (FIG. 1) considering the addition of one or more new
physical data stores 115 (FIG. 1). It is understood that the
flowchart of FIG. 3C provides merely an example of the many
different types of functional arrangements that may be
employed to implement the operation of the other portion of
the data store management application 130 as described
herein. As an alternative, the flowchart of FIG. 3C may be
viewed as depicting an example of steps of a method imple-
mented in the computing device 103 (FIG. 1) according to one
or more embodiments.

Beginning with box 339, the data store management appli-
cation 130 obtains a request to repartition a database 118 that
is horizontally partitioned across multiple physical data
stores 115. For example, the request may be obtained from the
data store client application 139 (FIG. 1). In box 342, the data
store management application 130 determines a new number
of buckets 121 (FIG. 1).

In one example, the new number of buckets 121 may be
selected to be amultiple of the existing number of buckets 121
and of a new number of physical data stores 115. In another
example, the new number of buckets 121 may be selected to
be a multiple of the existing number of buckets 121 plus a
positive integer. In yet another example, the new number of
buckets 121 may be selected to be a multiple of the sum of a
positive integer and the previous quantity of the physical data
stores 115.

Once the new number of buckets 121 is determined, the
data store management application 130 reassigns data items
124 from the old bucketing arrangement to the new bucketing
arrangement in box 345. In this reassignment, the data items
124 remain unmoved among the physical data stores 115. In
one embodiment, new bucket identifiers may be stored along
with the data items 124 in the database 118. In another
embodiment, the bucket assignment configuration 136 (FIG.
1) is updated so that dynamically generated bucket identifiers
correspond to the new bucket identifiers.

In box 348, the data store management application 130
obtains a request to redistribute data items 124 to newly added
physical data stores 115. Such a request may automatically
follow the bucket 121 reassignment or may be manually
generated by a data store client application 139 (FIG. 1). In
box 351, the data store management application 130 migrates
data items 124 that are assigned to a subset of the new buckets
121 to the new physical data stores 115. The quantity of the
buckets 121 moved to each new physical data store corre-
sponds to the number of buckets 121 divided by the total
number of physical data stores 115. The migration provides
for an even distribution of the data items 124 across the
physical data stores 115. Thereafter, the portion of the data
store management application 130 ends.

With reference to FIG. 4, shown is a schematic block
diagram of the computing device 103 according to an
embodiment of the present disclosure. The computing device
103 includes at least one processor circuit, for example, hav-
ing a processor 403 and a memory 406, both of which are
coupled to a local interface 409. To this end, the computing
device 103 may comprise, for example, at least one server
computer or like device. The local interface 409 may com-

25

35

40

45

55

8

prise, for example, a data bus with an accompanying address/
control bus or other bus structure as can be appreciated.

Stored in the memory 406 are both data and several com-
ponents that are executable by the processor 403. In particu-
lar, stored in the memory 406 and executable by the processor
403 are the data store management application 130 and poten-
tially other applications. Also stored in the memory 406 may
be a data store 127 and other data. In addition, an operating
system may be stored in the memory 406 and executable by
the processor 403.

Itisunderstood that there may be other applications that are
stored in the memory 406 and are executable by the processor
403 as can be appreciated. Where any component discussed
herein is implemented in the form of software, any one of a
number of programming languages may be employed such
as, for example, C, C++, C#, Objective C, Java®, JavaS-
cript®, Perl, PHP, Visual Basic®, Python®, Ruby, Delphi®,
Flash®, or other programming languages.

A number of software components are stored in the
memory 406 and are executable by the processor 403. In this
respect, the term “executable” means a program file that is in
a form that can ultimately be run by the processor 403.
Examples of executable programs may be, for example, a
compiled program that can be translated into machine code in
aformatthat can beloaded into a random access portion of the
memory 406 and run by the processor 403, source code that
may be expressed in proper format such as object code that is
capable of being loaded into a random access portion of the
memory 406 and executed by the processor 403, or source
code that may be interpreted by another executable program
to generate instructions in a random access portion of the
memory 406 to be executed by the processor 403, etc. An
executable program may be stored in any portion or compo-
nent of the memory 406 including, for example, random
access memory (RAM), read-only memory (ROM), hard
drive, solid-state drive, USB flash drive, memory card, optical
disc such as compact disc (CD) or digital versatile disc
(DVD), floppy disk, magnetic tape, or other memory compo-
nents.

The memory 406 is defined herein as including both vola-
tile and nonvolatile memory and data storage components.
Volatile components are those that do not retain data values
upon loss of power. Nonvolatile components are those that
retain data upon a loss of power. Thus, the memory 406 may
comprise, for example, random access memory (RAM), read-
only memory (ROM), hard disk drives, solid-state drives,
USB flash drives, memory cards accessed via a memory card
reader, floppy disks accessed via an associated floppy disk
drive, optical discs accessed via an optical disc drive, mag-
netic tapes accessed via an appropriate tape drive, and/or
other memory components, or a combination of any two or
more of these memory components. In addition, the RAM
may comprise, for example, static random access memory
(SRAM), dynamic random access memory (DRAM), or mag-
netic random access memory (MRAM) and other such
devices. The ROM may comprise, for example, a program-
mable read-only memory (PROM), an erasable program-
mable read-only memory (EPROM), an electrically erasable
programmable read-only memory (EEPROM), or other like
memory device.

Also, the processor 403 may represent multiple processors
403 and the memory 406 may represent multiple memories
406 that operate in parallel processing circuits, respectively.
In such a case, the local interface 409 may be an appropriate
network that facilitates communication between any two of
the multiple processors 403, between any processor 403 and
any of the memories 406, or between any two of the memories

US 9,355,134 Bl

9

406, etc. The local interface 409 may comprise additional
systems designed to coordinate this communication, includ-
ing, for example, performing load balancing. The processor
403 may be of electrical or of some other available construc-
tion.

Although data store management application 130, the data
store client application 139 (FIG. 1), and other various sys-
tems described herein may be embodied in software or code
executed by general purpose hardware as discussed above, as
an alternative the same may also be embodied in dedicated
hardware or a combination of software/general purpose hard-
ware and dedicated hardware. If embodied in dedicated hard-
ware, each can be implemented as a circuit or state machine
that employs any one of or a combination of a number of
technologies. These technologies may include, but are not
limited to, discrete logic circuits having logic gates for imple-
menting various logic functions upon an application of one or
more data signals, application specific integrated circuits hav-
ing appropriate logic gates, or other components, etc. Such
technologies are generally well known by those skilled in the
art and, consequently, are not described in detail herein.

The flowcharts of FIGS. 3A-3C show the functionality and
operation of an implementation of portions of the data store
management application 130. If embodied in software, each
block may represent a module, segment, or portion of code
that comprises program instructions to implement the speci-
fied logical function(s). The program instructions may be
embodied in the form of source code that comprises human-
readable statements written in a programming language or
machine code that comprises numerical instructions recog-
nizable by a suitable execution system such as a processor
403 in a computer system or other system. The machine code
may be converted from the source code, etc. If embodied in
hardware, each block may represent a circuit or a number of
interconnected circuits to implement the specified logical
function(s).

Although the flowcharts of FIGS. 3A-3C show a specific
order of execution, it is understood that the order of execution
may differ from that which is depicted. For example, the order
of'execution of two or more blocks may be scrambled relative
to the order shown. Also, two or more blocks shown in suc-
cession in FIGS. 3A-3C may be executed concurrently or
with partial concurrence. Further, in some embodiments, one
or more of the blocks shown in 3A-3C may be skipped or
omitted. In addition, any number of counters, state variables,
warning semaphores, or messages might be added to the
logical flow described herein, for purposes of enhanced util-
ity, accounting, performance measurement, or providing
troubleshooting aids, etc. It is understood that all such varia-
tions are within the scope of the present disclosure.

Also, any logic or application described herein, including
the data store management application 130 and the data store
client application 139, that comprises software or code can be
embodied in any non-transitory computer-readable medium
for use by or in connection with an instruction execution
system such as, for example, a processor 403 in a computer
system or other system. In this sense, the logic may comprise,
for example, statements including instructions and declara-
tions that can be fetched from the computer-readable medium
and executed by the instruction execution system. In the
context of the present disclosure, a “computer-readable
medium” can be any medium that can contain, store, or main-
tain the logic or application described herein for use by or in
connection with the instruction execution system. The com-
puter-readable medium can comprise any one of many physi-
cal media such as, for example, magnetic, optical, or semi-
conductor media. More specific examples of a suitable

20

25

30

40

45

55

10

computer-readable medium would include, but are not lim-
ited to, magnetic tapes, magnetic floppy diskettes, magnetic
hard drives, memory cards, solid-state drives, USB flash
drives, or optical discs. Also, the computer-readable medium
may be a random access memory (RAM) including, for
example, static random access memory (SRAM) and
dynamic random access memory (DRAM), or magnetic ran-
dom access memory (MRAM). In addition, the computer-
readable medium may be a read-only memory (ROM), a
programmable read-only memory (PROM), an erasable pro-
grammable read-only memory (EPROM), an electrically
erasable programmable read-only memory (EEPROM), or
other type of memory device.

It should be emphasized that the above-described embodi-
ments of the present disclosure are merely possible examples
of implementations set forth for a clear understanding of the
principles of the disclosure. Many variations and modifica-
tions may be made to the above-described embodiment(s)
without departing substantially from the spirit and principles
of the disclosure. All such modifications and variations are
intended to be included herein within the scope of this dis-
closure and protected by the following claims.

Therefore, the following is claimed:

1. A non-transitory computer-readable medium embody-
ing a program executable in a computing device, wherein
when executed the program causes the computing device to at
least:

maintain a database that is stored in a plurality of physical

data stores through horizontal partitioning, the database
including a plurality of data items;
assign individual ones of the plurality of data items to
individual ones of a plurality of first buckets by gener-
ating a respective hash code from a standardized portion
of the individual one of the plurality of data items and
determining the respective hash code modulo the num-
ber of the plurality of first buckets, wherein a first fixed
number of the plurality of first buckets are stored in
corresponding ones of the plurality of physical data
stores according to a mapping;
reassign the individual ones of the plurality of data items to
individual ones of a plurality of second buckets by deter-
mining the respective hash code modulo the number of
the plurality of second buckets, the number of the plu-
rality of second buckets being a multiple of the number
of first buckets in the plurality of first buckets, a multiple
of a current number of physical data stores, and a mul-
tiple of an increased number of physical data stores; and

update the mapping to map a second fixed number of the
plurality of second buckets to corresponding ones of the
plurality of physical data stores, wherein the plurality of
data items are unmoved between the plurality of physi-
cal data stores by updating the mapping.

2. The non-transitory computer-readable medium of claim
1, wherein when executed the program further causes the
computing device to at least determine one of the plurality of
physical data stores in which a given one of the plurality of
data items is stored by:

generating the respective hash code for the given one of the

plurality of data items;

generating a second bucket identifier based at least in part

on the respective hash code modulo the number of the
plurality of second buckets; and

determining the one of the plurality of physical data stores

that corresponds to the second bucket identifier accord-
ing to the mapping.

3. The non-transitory computer-readable medium of claim
1, wherein when executed the program further causes the

US 9,355,134 Bl

11

computing device to at least: add at least one physical data
store to the plurality of physical data stores;

migrate the data items which are assigned to a subset of the

plurality of second buckets to the at least one physical
data store that has been added; and

update the mapping to map a third fixed number of the

plurality of second buckets to corresponding ones of the
plurality of physical data stores, wherein an even distri-
bution of the plurality of second buckets is achieved
among the plurality of physical data stores.

4. A system, comprising:

a plurality of physical data stores;

at least one computing device including a processor and a

memory; and

a data store management application executable in the at

least one computing device, wherein when executed the

data store management application causes the at least

one computing device to at least:

maintain a database of data that is horizontally parti-
tioned into a set of first buckets using modulo-based
assignments, a fixed number of the set of first buckets
being stored in individual ones of the plurality of
physical data stores; and

repartition the database into a set of second buckets
using modulo-based assignments, the number of sec-
ond buckets in the set of second buckets being a mul-
tiple of the number of first buckets in the set of first
buckets, a multiple of a current number of physical
data stores, and a multiple of an increased number of
physical data stores, wherein the data in the database
is unmoved between the plurality of physical data
stores by repartitioning.

5. The system of claim 4, wherein when executed the data
store management application further causes the at least one
computing device to at least determine a modulo-based
assignment for a data item in the database by generating a
hash code from a standardized portion of the data item and
calculating the modulo-based assignment based at least in
part on a result of the hash code modulo a quantity of buckets.

6. The system of claim 5, wherein the standardized portion
of the data item corresponds to a key.

7. The system of claim 4, wherein the fixed number is an
integer greater than one.

8. The system of claim 4, wherein the modulo-based
assignments are stored in association with the data.

9. The system of claim 4, wherein the modulo-based
assignments are determined dynamically in response to
accessing the data.

10. The system of claim 4, wherein when executed the data
store management application further causes the at least one
computing device to at least:

add at least one other physical data store to the plurality of

physical data stores; and

migrate the data in the database corresponding to a subset

of the set of second buckets to the at least one other
physical data store.

11. The system of claim 10, wherein migrating the data
further comprises updating a mapping of the set of second
buckets to the plurality of physical data stores.

12. A method, comprising:

maintaining a plurality of physical data stores correspond-

ing to horizontal partitions of a database containing a
plurality of data items, wherein the plurality of data
items are assigned to respective ones of a plurality of
first buckets, and the data items assigned to a respective
first bucket are stored in a mapped one of the plurality of
physical data stores; and

10

40

45

55

60

12

reassigning, via a computing device, for individual ones of
the plurality of first buckets, the data items which are
assigned to the first bucket to a second bucket in a cor-
responding subset of a plurality of second buckets, the
corresponding subset of the plurality of second buckets
being distinct for each first bucket, the second buckets in
the corresponding subset being stored in the mapped one
of the plurality of physical data stores corresponding to
the first bucket, the number of second buckets in the
corresponding subset being a fixed number for all of the
plurality of first buckets, the number of second buckets
in the plurality of second buckets being a multiple of the
number of first buckets in the plurality of first buckets, a
multiple of a current number of physical data stores, and
a multiple of an increased number of physical data
stores.
13. The method of claim 12, wherein an individual one of
the plurality of data items is associated with a key, and the
method further comprises assigning, by the computing
device, the individual one of the plurality of data items to one
of the plurality of first buckets by:
generating, by the computing device, a hash code from the
key of the individual one of the plurality of data items;

determining, by the computing device, a first bucket iden-
tifier by calculating the hash code modulo the number of
the plurality of first buckets; and

assigning, by the computing device, the individual one of

the plurality of data items to the one of the plurality of
first buckets corresponding to the first bucket identifier.

14. The method of claim 13, wherein assigning, by the
computing device, the individual one of the plurality of data
items to the one of the plurality of first buckets corresponding
to the first bucket identifier further comprises storing, by the
computing device, the first bucket identifier in association
with the individual one of the plurality of data items.

15. The method of claim 12, wherein an individual one of
the plurality of data items is associated with a key, and reas-
signing further comprises:

for the individual one of the plurality of data items:

generating, by the computing device, a hash code from
the key of the individual one of the plurality of data
items;

determining, by the computing device, a second bucket
identifier by calculating the hash code modulo the
number of second buckets; and

reassigning, by the computing device, the individual one
of the plurality of data items to the second bucket
corresponding to the second bucket identifier.

16. The method of claim 15, wherein reassigning, by the
computing device, the individual one of the plurality of data
items to the second bucket corresponding to the second
bucket identifier further comprises storing, by the computing
device, the second bucket identifier in association with the
individual one ofthe plurality of data items, the second bucket
identifier replacing a first bucket identifier.

17. The method of claim 12, further comprising:

adding, by the computing device, at least one physical data

store to the plurality of physical data stores.

18. The method of claim 17, further comprising migrating,
by the computing device, the data items that are assigned to a
second bucket in the corresponding subset of second buckets
from the mapped one of the plurality of physical data stores to
the at least one physical data store that has been added.

19. The method of claim 12, further comprising determin-
ing, by the computing device, one of the plurality of physical
data stores in which a given one of the plurality of data items
is stored by:

US 9,355,134 Bl

13

generating, by the computing device, a hash code for the
given one of the plurality of data items;
generating, by the computing device, a second bucket iden-
tifier based at least in part on the hash code modulo the
number of second buckets; and
determining, by the computing device, the one of the plu-
rality of physical data stores that corresponds to the
second bucket identifier.
20. The method of claim 12, wherein the plurality of data
items are unmoved between the plurality of physical data
stores by the reassigning.

#* #* #* #* #*

10

14

